Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Ment Health ; 3(1): 19, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37861869

RESUMO

Positive and negative emotional states in rats can be studied by investigating ultrasonic vocalizations (USVs). Positive affect in rats is indexed by 50 kHz hedonic USVs, and negative affect is indexed by 22 kHz aversive calls. We examined the relationship of emotional states in rats using medial prefrontal cortex (MPFC) quantitative electroencephalograms (qEEG) and found that hedonic USVs were associated with active wake qEEG (high alpha/low delta power), and aversive USVs occurred with groggy wake qEEG (low alpha/high delta). Further, alpha frequency electrical stimulation of the MPFC induces hedonic calls and reward-seeking behavior, whereas delta frequency stimulation produces aversive calls and avoidance behavior. The brain region responsible for generating motor output for USVs, the periaqueductal gray (PAG), shows a motor-evoked potential that is temporally locked to the alpha (hedonic) and delta (aversive) motor-evoked potential. Closed-loop alpha frequency electrical stimulation could prevent delta qEEG and aversive USVs. At the neuronal circuit level, the alpha rhythm was associated with synaptic long-term potentiation (LTP) in the cortex, whereas the delta rhythm was associated with synaptic depotentiation (LTD) in the cortex. At the pharmacological level, NMDAR and growth factor modulation regulated these forms of neuroplasticity. At the single neuron level, excitatory neurons show increased activity in response to alpha frequencies and decreased activity during delta frequencies. In humans, the feeling of joy increased alpha and decreased delta power in frontal scalp qEEG, and the opposite response was seen for sadness. Thus, the synchronization of alpha/delta oscillations through the neuronal circuit responsible for emotional expression coordinates emotional behavior, and the switch between active wake/positive affect and groggy wake/negative affect is under the control of an LTP- LTD synaptic plasticity mechanism.

2.
Mol Psychiatry ; 28(3): 1101-1111, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481930

RESUMO

We developed an IGFBP2-mimetic peptide fragment, JB2, and showed that it promotes basal synaptic structural and functional plasticity in cultured neurons and mice. We demonstrate that JB2 directly binds to dendrites and synapses, and its biological activity involves NMDA receptor activation, gene transcription and translation, and IGF2 receptors. It is not IGF1 receptor-dependent. In neurons, JB2 induced extensive remodeling of the membrane phosphoproteome. Synapse and cytoskeletal regulation, autism spectrum disorder (ASD) risk factors, and a Shank3-associated protein network were significantly enriched among phosphorylated and dephosphorylated proteins. Haploinsufficiency of the SHANK3 gene on chromosome 22q13.3 often causes Phelan-McDermid Syndrome (PMS), a genetically defined form of autism with profound deficits in motor behavior, sensory processing, language, and cognitive function. We identified multiple disease-relevant phenotypes in a Shank3 heterozygous mouse and showed that JB2 rescued deficits in synaptic function and plasticity, learning and memory, ultrasonic vocalizations, and motor function; it also normalized neuronal excitability and seizure susceptibility. Notably, JB2 rescued deficits in the auditory evoked response latency, alpha peak frequency, and steady-state electroencephalography response, measures with direct translational value to human subjects. These data demonstrate that JB2 is a potent modulator of neuroplasticity with therapeutic potential for the treatment of PMS and ASD.


Assuntos
Transtorno do Espectro Autista , Transtornos Cromossômicos , Humanos , Camundongos , Animais , Transtorno do Espectro Autista/genética , Proteínas do Tecido Nervoso/genética , Deleção Cromossômica , Transtornos Cromossômicos/genética , Peptídeos/genética , Modelos Animais de Doenças , Plasticidade Neuronal , Cromossomos Humanos Par 22/metabolismo , Proteínas dos Microfilamentos/genética
3.
Int J Neuropsychopharmacol ; 25(12): 979-991, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-35882204

RESUMO

BACKGROUND: The role of glutamatergic receptors in major depressive disorder continues to be of great interest for therapeutic development. Recent studies suggest that both negative and positive modulation of N-methyl-D-aspartate receptors (NMDAR) can produce rapid antidepressant effects. Here we report that zelquistinel, a novel NMDAR allosteric modulator, exhibits high oral bioavailability and dose-proportional exposures in plasma and the central nervous system and produces rapid and sustained antidepressant-like effects in rodents by enhancing activity-dependent, long-term synaptic plasticity. METHODS: NMDAR-mediated functional activity was measured in cultured rat brain cortical neurons (calcium imaging), hNR2A or B subtype-expressing HEK cells, and synaptic plasticity in rat hippocampal and medial prefrontal cortex slices in vitro. Pharmacokinetics were evaluated in rats following oral administration. Antidepressant-like effects were assessed in the rat forced swim test and the chronic social deficit mouse model. Target engagement and the safety/tolerability profile was assessed using phencyclidine-induced hyperlocomotion and rotarod rodent models. RESULTS: Following a single oral dose, zelquistinel (0.1-100 µg/kg) produced rapid and sustained antidepressant-like effects in the rodent depression models. Brain/ cerebrospinal fluid concentrations associated with zelquistinel antidepressant-like activity also increased NMDAR function and rapidly and persistently enhanced activity-dependent synaptic plasticity (long-term potentiation), suggesting that zelquistinel produces antidepressant-like effects by enhancing NMDAR function and synaptic plasticity. Furthermore, Zelquistinel inhibited phencyclidine (an NMDAR antagonist)-induced hyperlocomotion and did not impact rotarod performance. CONCLUSIONS: Zelquistinel produces rapid and sustained antidepressant effects by positively modulating the NMDARs, thereby enhancing long-term potentiation of synaptic transmission.


Assuntos
Transtorno Depressivo Maior , Receptores de N-Metil-D-Aspartato , Animais , Ratos , Camundongos , Transtorno Depressivo Maior/tratamento farmacológico , Ratos Sprague-Dawley , Antidepressivos/uso terapêutico , Potenciação de Longa Duração/fisiologia , Fenciclidina/farmacologia
4.
Neuroreport ; 33(7): 312-319, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35594441

RESUMO

BACKGROUND: A novel N-methyl-D-aspartate receptor (NMDAR) allosteric modulator, rapastinel (RAP, formerly GLYX-13), elicits long-lasting antidepressant-like effects by enhancing long-term potentiation (LTP) of synaptic transmission. RAP elicits these effects by binding to a unique site in the extracellular region of the NMDAR complex, transiently enhancing NMDAR-gated current in pyramidal neurons of both hippocampus and medial prefrontal cortex. METHODS: We compared efficacy of RAP in modulating Schaffer collateral-evoked NMDAR-currents as a function of kinetics of the Ca2+ chelator in the intracellular solution, using whole-cell patch-clamp recordings. The intracellular solution contained either the slow Ca2+ chelator EGTA [3,12-bis(carboxymethyl)-6,9-dioxa-3,12-diazatetradecane-1,14-dioic acid, 0.5 mmol/l] or the 40-500-fold kinetically faster, more selective Ca2+ chelator BAPTA {2,2',2″,2‴-[ethane-1,2-diylbis(oxy-2,1-phenylenenitrilo)] tetraacetic acid, 5 mmol/l}. NMDAR-gated currents were pharmacologically isolated by bath application of the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid receptor antagonist 6-nitro-2,3-dioxo-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (10 µmol/l) plus the GABA receptor blocker bicuculline (20 µmol/l). RESULTS: When the slow Ca2+ chelator EGTA was in the intracellular solution, RAP elicited significant enhancement of NMDAR-gated current at a 1 µmol/l concentration, and significantly reduced current at 10 µmol/l. In contrast, when recording with the 40-500-fold kinetically faster, more selective Ca2+ chelator BAPTA, NMDAR current increased in magnitude by 84% as BAPTA washed into the cell, and the enhancement of NMDAR current by 1 µmol/l RAP was completely blocked. Interestingly, the reduction in NMDAR current from 10 µmol/l RAP was not affected by the presence of BAPTA in the recording pipette, indicating that this effect is mediated by a different mechanism. CONCLUSION: Extracellular binding of RAP to the NMDAR produces a novel, long-range reduction in affinity of the Ca2+ inactivation site on the NMDAR C-terminus accessible to the intracellular space. This action underlies enhancement in NMDAR-gated conductance elicited by RAP.


Assuntos
Cálcio , Receptores de N-Metil-D-Aspartato , Quelantes/farmacologia , Ácido Egtázico/farmacologia , Hipocampo/fisiologia , Oligopeptídeos
5.
Neurobiol Pain ; 7: 100039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909296

RESUMO

Previous studies have shown that oral administration of the NMDAR modulator NYX-2925 alleviates pain in several animal models of neuropathic pain and this appears to be through mPFC, but not spinal, mediated mechanisms. While much is known about the impact of neuropathic pain on NMDAR-mediated signaling in the spinal cord, limited studies have focused on the brain. In the current study, we assess signaling changes associated with NMDAR-mediated plasticity in the mPFC and the impact of NYX-2925 administration on the normalization of these signaling changes. We found a decrease in activated Src levels in the mPFC of animals with chronic constriction injury (CCI) of the sciatic nerve. While Src mediated activation of NMDARs was also decreased in CCI animals, the main NMDAR phosphorylation site of CAMKII was not affected. This is in opposition to what has been found in the spinal cord, where both Src and CAMKII activation are increased. Oral administration of NYX-2925 restored levels of activated Src and Src phosphorylation sites on GluN2A and GluN2B in the mPFC, with no effect on activated CAMKII levels. The analgesic effect of NYX-2925 appears dependent on this restoration of Src activation in the mPFC, as co-administering Src activation inhibitors prevented the NYX-2925 analgesic effect. Overall, these data suggest that NMDAR-mediated signaling plays a key role in neuropathic pain, albeit in different directions in the spinal cord vs. the mPFC. Furthermore, the analgesic effect of NYX-2925 appears to involve a restoration of NMDAR-mediated signaling in the mPFC.

6.
J Neurochem ; 152(5): 523-541, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31376158

RESUMO

N-methyl-d-aspartate receptors (NMDARs) mediate both physiological and pathophysiological processes, although selective ligands lack broad clinical utility. NMDARs are composed of multiple subunits, but N-methyl-d-aspartate receptor subunit 2 (GluN2) is predominately responsible for functional heterogeneity. Specifically, the GluN2A- and GluN2B-containing subtypes are enriched in adult hippocampus and cortex and impact neuronal communication via dynamic trafficking into and out of the synapse. We sought to understand if ((2S, 3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3,4]octan-2-yl) butanamide (NYX-2925), a novel NMDAR modulator, alters synaptic levels of GluN2A- or GluN2B-containing NMDARs. Low-picomolar NYX-2925 increased GluN2B colocalization with the excitatory post-synaptic marker post-synaptic density protein 95 (PSD-95) in rat primary hippocampal neurons within 30 min. Twenty-four hours following oral administration, 1 mg/kg NYX-2925 increased GluN2B in PSD-95-associated complexes ex vivo, and low-picomolar NYX-2925 regulated numerous trafficking pathways in vitro. Because the NYX-2925 concentration that increases synaptic GluN2B was markedly below that which enhances long-term potentiation (mid-nanomolar), we sought to elucidate the basis of this effect. Although NMDAR-dependent, NYX-2925-mediated colocalization of GluN2B with PSD-95 occurred independent of ion flux, as colocalization increased in the presence of either the NMDAR channel blocker (5R,10S)-(-)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate or glycine site antagonist 7-chlorokynurenic acid. Moreover, while mid-nanomolar NYX-2925 concentrations, which do not increase synaptic GluN2B, enhanced calcium transients, functional plasticity was only enhanced by picomolar NYX-2925. Thus, NYX-2925 concentrations that increase synaptic GluN2B facilitated the chemical long-term potentiation induced insertion of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunit levels. Basal (unstimulated by chemical long-term potentiation) levels of synaptic GluA1 were only increased by mid-nanomolar NYX-2925. These data suggest that NYX-2925 facilitates homeostatic plasticity by initially increasing synaptic GluN2B via metabotropic-like NMDAR signaling. Cover Image for this issue: doi: 10.1111/jnc.14735.


Assuntos
Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Compostos de Espiro/farmacologia , Sinapses/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos
7.
Sleep ; 42(10)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31504971

RESUMO

STUDY OBJECTIVES: The present studies examine the effects of NMDAR activation by NYX-2925 diurnal rhythmicity of both sleep and wake as well as emotion. METHODS: Twenty-four-hour sleep EEG recordings were obtained in sleep-deprived and non-sleep-deprived rats. In addition, the day-night cycle of both activity and mood was measured using home cage ultrasonic-vocalization recordings. RESULTS: NYX-2925 significantly facilitated non-REM (NREM) sleep during the lights-on (sleep) period, and this effect persisted for 3 days following a single dose in sleep-deprived rats. Sleep-bout duration and REM latencies were increased without affecting total REM sleep, suggesting better sleep quality. In addition, delta power during wake was decreased, suggesting less drowsiness. NYX-2925 also rescued learning and memory deficits induced by sleep deprivation, measured using an NMDAR-dependent learning task. Additionally, NYX-2925 increased positive affect and decreased negative affect, primarily by facilitating the transitions from sleep to rough-and-tumble play and back to sleep. In contrast to NYX-2925, the NMDAR antagonist ketamine acutely (1-4 hours post-dosing) suppressed REM and non-REM sleep, increased delta power during wake, and blunted the amplitude of the sleep-wake activity rhythm. DISCUSSION: These data suggest that NYX-2925 could enhance behavioral plasticity via improved sleep quality as well as vigilance during wake. As such, the facilitation of sleep by NYX-2925 has the potential to both reduce symptom burden on neurological and psychiatric disorders as well as serve as a biomarker for drug effects through restoration of sleep architecture.


Assuntos
Afeto/fisiologia , Ritmo Circadiano/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Compostos de Espiro/farmacologia , Afeto/efeitos dos fármacos , Animais , Ritmo Circadiano/efeitos dos fármacos , Eletroencefalografia/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Sono/efeitos dos fármacos , Privação do Sono/tratamento farmacológico , Compostos de Espiro/uso terapêutico , Vigília/efeitos dos fármacos , Vigília/fisiologia
8.
Neuroreport ; 30(13): 863-866, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31373964

RESUMO

In humans, chronic pain is often expressed as a spontaneous emotional response which can lead to fragmented sleep. Rat 50-kHz and 20-kHz ultrasonic vocalizations are well-established measures of positive and negative emotional states, respectively. The rat chronic constriction injury model was used to induce chronic pain, and ultrasonic vocalizations were measured in both the heterospecific rough-and-tumble play (i.e. tickling) test as well as during 24-hour home cage recordings. Rates of hedonic 50-kHz ultrasonic vocalizations during the non-stimulus periods of the tickling test, as well as the rewarding value of tickling, were reduced in chronic constriction injury rats compared to sham controls. In the 24-hour home cage recording study, chronic constriction injury animals showed a reduced amplitude in circadian activity, as well as reduced hedonic 50-kHz ultrasonic vocalizations and increased evoked and spontaneous aversive 20-kHz ultrasonic vocalizations. These data demonstrate that rat ultrasonic vocalizations can be used to capture core symptoms of chronic pain and may be useful in the elucidation of the neuronal mechanisms that underlie the affective component of pain.


Assuntos
Dor Crônica/fisiopatologia , Dor Crônica/psicologia , Emoções/fisiologia , Ondas Ultrassônicas , Vocalização Animal/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/fisiopatologia , Neuropatia Ciática/psicologia
9.
Int J Neuropsychopharmacol ; 22(3): 247-259, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544218

RESUMO

BACKGROUND: Modulation of glutamatergic synaptic transmission by N-methyl-D-aspartate receptors can produce rapid and sustained antidepressant effects. Rapastinel (GLYX-13), initially described as a N-methyl-D-aspartate receptor partial glycine site agonist, exhibits rapid antidepressant effect in rodents without the accompanying dissociative effects of N-methyl-D-aspartate receptor antagonists. METHODS: The relationship between rapastinel's in vitro N-methyl-D-aspartate receptor pharmacology and antidepressant efficacy was determined by brain microdialysis and subsequent pharmacological characterization of therapeutic rapastinel concentrations in N-methyl-D-aspartate receptor-specific radioligand displacement, calcium mobilization, and medial prefrontal cortex electrophysiology assays. RESULTS: Brain rapastinel concentrations of 30 to 100 nM were associated with its antidepressant-like efficacy and enhancement of N-methyl-D-aspartate receptor-dependent neuronal intracellular calcium mobilization. Modulation of N-methyl-D-aspartate receptors by rapastinel was independent of D-serine concentrations, and glycine site antagonists did not block rapastinel's effect. In rat medial prefrontal cortex slices, 100 nM rapastinel increased N-methyl-D-aspartate receptor-mediated excitatory postsynaptic currents and enhanced the magnitude of long-term potentiation without any effect on miniature EPSCs or paired-pulse facilitation responses, indicating postsynaptic action of rapastinel. A critical amino acid within the NR2 subunit was identified as necessary for rapastinel's modulatory effect. CONCLUSION: Rapastinel brain concentrations associated with antidepressant-like activity directly enhance medial prefrontal cortex N-methyl-D-aspartate receptor activity and N-methyl-D-aspartate receptor-mediated synaptic plasticity in vitro. At therapeutic concentrations, rapastinel directly enhances N-methyl-D-aspartate receptor activity through a novel site independent of the glycine coagonist site. While both rapastinel and ketamine physically target N-methyl-D-aspartate receptors, the 2 molecules have opposing actions on N-methyl-D-aspartate receptors. Modest positive modulation of N-methyl-D-aspartate receptors by rapastinel represents a novel pharmacological approach to promote well-tolerated, rapid, and sustained improvements in mood disorders.


Assuntos
Antidepressivos/administração & dosagem , Antidepressivos/metabolismo , Córtex Cerebral/metabolismo , Oligopeptídeos/administração & dosagem , Oligopeptídeos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Agonismo Parcial de Drogas , Masculino , Microdiálise/métodos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Resultado do Tratamento
10.
J Pharmacol Exp Ther ; 366(3): 485-497, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986951

RESUMO

NYX-2925 [(2S,3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3.4]octan-2-yl)butanamide] is a novel N-methyl-d-aspartate (NMDA) receptor modulator that is currently being investigated in phase 2 clinical studies for the treatment of painful diabetic peripheral neuropathy and fibromyalgia. Previous studies demonstrated that NYX-2925 is a member of a novel class of NMDA receptor-specific modulators that affect synaptic plasticity processes associated with learning and memory. Studies here examined NYX-2925 administration in rat peripheral chronic constriction nerve injury (CCI) and streptozotocin-induced diabetic mechanical hypersensitivity. Additionally, NYX-2925 was examined in formalin-induced persistent pain model and the tail flick test of acute nociception. Oral administration of NYX-2925 resulted in rapid and long-lasting analgesia in both of the neuropathic pain models and formalin-induced persistent pain, but was ineffective in the tail flick model. The analgesic effects of NYX-2925 were blocked by the systemic administration of NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid. Microinjection of NYX-2925 into the medial prefrontal cortex of CCI rats resulted in analgesic effects similar to those observed following systemic administration, whereas intrathecal administration of NYX-2925 was ineffective. In CCI animals, NYX-2925 administration reversed deficits seen in a rat model of rough-and-tumble play. Thus, it appears that NYX-2925 may have therapeutic potential for the treatment of neuropathic pain, and the data presented here support the idea that NYX-2925 may act centrally to ameliorate pain and modulate negative affective states associated with chronic neuropathic pain.


Assuntos
Analgésicos/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Compostos de Espiro/farmacologia , Analgésicos/uso terapêutico , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Compostos de Espiro/uso terapêutico , Vocalização Animal/efeitos dos fármacos
11.
Methods Mol Biol ; 1804: 189-205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29926409

RESUMO

Protocols for assay of 24 different Glycolipid-Glycosyltransferases (GSL-GLTs) of the eukaryotic systems are described. Problems of quantitating the activities in crude membranes are also described. Different separation methods (for separation of substrate, donors, and the product of the reaction) have been described based on the paper chromatography or high voltage paper electrophoresis in 1.0% Na2B4O7. Liquid Scintillation counting system was used for quantitation of the enzymatic product. In the assay of each GSL-GLT it is recommended to compare the selected method to be used with the exact conditions used by the authors published previously. As a test case for these assays the following kinetic parameters for Lactosylceramide Synthase, GalT-2 (UDP-Gal: Glc-Cer ß1-4-galactosyltransferase), (Km of glucosylceramide = 1.65 × 10-4 M; Km for UDP-Gal = 0.5 × 10-4 M; V max is determined in the presence of optimum detergent concentrations (2-15 mg/ml of Cutscum-Triton X-100, 2:1); Mn++ and Mg++, 10-20 mM) has been reported. The importance of use of GalT-2 assay method (as a model system) in the purified Golgi-rich membranes from 13-day-old embryonic chicken brains (13-ECB) is described.


Assuntos
Ensaios Enzimáticos/métodos , Células Eucarióticas/metabolismo , Gangliosídeos/metabolismo , Globosídeos/metabolismo , Glicosiltransferases/metabolismo , Lactosilceramidas/biossíntese , Antígenos CD15/metabolismo , Animais , Apoptose , Encéfalo/metabolismo , Galinhas
13.
Int J Neuropsychopharmacol ; 21(3): 242-254, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29099938

RESUMO

Background: N-methyl-D-aspartate receptors are one member of a family of ionotropic glutamate receptors that play a pivotal role in synaptic plasticity processes associated with learning and have become attractive therapeutic targets for diseases such as depression, anxiety, schizophrenia, and neuropathic pain. NYX-2925 ((2S, 3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3.4]octan-2-yl)butanamide) is one member of a spiro-ß-lactam-based chemical platform that mimics some of the dipyrrolidine structural features of rapastinel (formerly GLYX-13: threonine-proline-proline-threonine) and is distinct from known N-methyl-D-aspartate receptor agonists or antagonists such as D-cycloserine, ketamine, MK-801, kynurenic acid, or ifenprodil. Methods: The in vitro and in vivo pharmacological properties of NYX-2925 were examined. Results: NYX-2925 has a low potential for "off-target" activity, as it did not exhibit any significant affinity for a large panel of neuroactive receptors, including hERG receptors. NYX-2925 increased MK-801 binding to human N-methyl-D-aspartate receptor NR2A-D subtypes expressed in HEK cells and enhanced N-methyl-D-aspartate receptor current and long-term potentiation (LTP) in rat hippocampal slices (100-500 nM). Single dose ex vivo studies showed increased metaplasticity in a hippocampal LTP paradigm and structural plasticity 24 hours after administration (1 mg/kg p.o.). Significant learning enhancement in both novel object recognition and positive emotional learning paradigms were observed (0.01-1 mg/kg p.o.), and these effects were blocked by the N-methyl-D-aspartate receptor antagonist CPP. NYX-2925 does not show any addictive or sedative/ataxic side effects and has a therapeutic index of >1000. NYX-2925 (1 mg/kg p.o.) has a cerebrospinal fluid half-life of 1.2 hours with a Cmax of 44 nM at 1 hour. Conclusions: NYX-2925, like rapastinel, activates an NMDA receptor-mediated synaptic plasticity process and may have therapeutic potential for a variety of NMDA receptor-mediated central nervous system disorders.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Emoções/efeitos dos fármacos , Fármacos Atuantes sobre Aminoácidos Excitatórios/líquido cefalorraquidiano , Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Células HEK293 , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Estrutura Molecular , Plasticidade Neuronal/fisiologia , Oligopeptídeos/líquido cefalorraquidiano , Oligopeptídeos/química , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Pirazinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Adv Exp Med Biol ; 1112: 199-221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637700

RESUMO

In normal and cancer cells, successful cell division requires accurate duplication of chromosomal DNA. All cells require a multiprotein DNA duplication system (replisomes) for their existence. However, death of normal cells in our body occurs through the apoptotic process. During apoptotic process several crucial genes are downregulated with the upregulation of caspase pathways, leading to ultimate degradation of genomic DNA. In metastatic cancer cells (SKBR-3, MCF -7, and MDA-462), this process is inhibited to achieve immortality as well as overexpression of the enzymes for the synthesis of marker molecules. It is believed that the GSL of the lacto family such as LeX, SA-LeX, LeY, Lea, and Leb are markers on the human colon and breast cancer cells. Recently, we have characterized that a few apoptotic chemicals (cis-platin, L-PPMP, D-PDMP, GD3 ganglioside, GD1b ganglioside, betulinic acid, tamoxifen, and melphalan) in low doses kill metastatic breast cancer cells. The apoptosis-inducing agent (e.g., cis-platin) showed inhibition of DNA polymerase/helicase (part of the replisomes) and also modulated (positively) a few glycolipid-glycosyltransferase (GSL-GLTs) transcriptions in the early stages (within 2 h after treatment) of apoptosis. These Lc-family GSLs are also present on the surfaces of human breast and colon carcinoma cells. It is advantageous to deliver these apoptotic chemicals through the metastatic cell surfaces containing high concentration of marker glycolipids (Lc-GSLs). Targeted application of apoptotic chemicals (in micro scale) to kill the cancer cells would be an ideal way to inhibit the metastatic growth of both breast and colon cancer cells. It was observed in three different breast cancer lines (SKBR-3, MDA-468, and MCF-7) that in 2 h very little apoptotic process had started, but predominant biochemical changes (including inactivation of replisomes) started between 6 and 24 h of the drug treatments. The contents of replisomes (replisomal complexes) during induction of apoptosis are not known. It is known that DNA helicase activities (major proteins catalyze the melting of dsDNA strands) change during apoptotic induction process. Previously DNA Helicase-III was characterized as a component of the replication complexes isolated from carcinoma cells and normal rapid growing embryonic chicken brain cells. Helicase activities were assayed by a novel method (combined immunoprecipitation-ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of nicked "ACT-DNA," by determining values obtained from +/- aphidicolin added to the incubation mixtures. Very little is known about the stability of the "replication complexes" (or replisomes) during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during replication, repair, and recombination processes. In all three breast carcinoma cell lines (SKBR-3, MCF-7, and MDA-468), a common trend, decrease of activities of DNA polymerase-alpha and Helicase-III (estimated and detected with a polyclonal antibody), was observed, after cis-platin- and L-PPMP-induced apoptosis. Previously our laboratory has documented downregulation (within 24-48 h) of several GSL-GLTs with these apoptotic reagents in breast and colon cancer cells also. Perhaps induced apoptosis would improve the prognosis in metastatic breast and colon cancer patients.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/patologia , DNA Helicases/genética , DNA Polimerase I/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Embrião de Galinha , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos
15.
Neuroreport ; 28(17): 1122-1126, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28957945

RESUMO

Positive emotions have been shown to induce resilience to stress in humans, as well as increase cognitive abilities (learning, memory, and problem solving) and improve overall health. In rats, frequency modulated 50-kHz ultrasonic vocalizations (hedonic 50 kHz) reflect a positive affective state and are best elicited by rough-and-tumble play. A well-established rat chronic unpredictable stress paradigm was used to produce a robust and long-lasting decrease in positive affect, increase in negative affect, and learned helplessness in Sprague-Dawley rats. Rough-and-tumble play (3 min every 3 days) reversed stress-induced effects of chronic unpredictable stress in the Porsolt forced swim test, novelty-induced hypophagia, sucrose preference, and ultrasonic vocalization assays compared with a light touch control group. These data demonstrate that positive affect induces resilience to stress effects in rats, and that rough-and-tumble play can be used to explore the biological basis of resilience that may lead to the development of new therapeutics for stress-related disorders.


Assuntos
Resiliência Psicológica , Comportamento Social , Estresse Psicológico , Afeto , Animais , Sacarose Alimentar , Comportamento Alimentar , Desamparo Aprendido , Masculino , Atividade Motora , Ratos Sprague-Dawley , Percepção Gustatória , Ultrassom , Incerteza , Vocalização Animal
16.
Int J Neuropsychopharmacol ; 20(6): 476-484, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158790

RESUMO

Background: Posttraumatic stress disorder is an anxiety disorder characterized by deficits in the extinction of aversive memories. Insulin-like growth factor 1 (IGF1) is the only growth factor that has shown anxiolytic and antidepressant properties in human clinical trials. In animal studies, insulin-like growth factor binding protein 2 (IGFBP2) shows both IGF1-dependent and IGF1-independent pharmacological effects, and IGFBP2 expression is upregulated by rough-and-tumble play that induces resilience to stress. Methods: IGFBP2 was evaluated in Porsolt, contextual fear conditioning, and chronic unpredictable stress models of posttraumatic stress disorder. The dependence of IGFBP2 effects on IGF1- and AMPA-receptor activation was tested using selective receptor antagonists. Dendritic spine morphology was measured in the dentate gyrus and the medial prefrontal cortex 24 hours after in vivo dosing. Results: IGFBP2 was 100 times more potent than IGF1 in the Porsolt test. Unlike IGF1, effects of IGFBP2 were not blocked by the IGF1-receptor antagonist JB1, or by the AMPA-receptor antagonist 2,3-Dioxo-6-nitro-1,2,3,4 tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) in the Porsolt test. IGFBP2 (1 µg/kg) and IGF1 (100 µg/kg i.v.) each facilitated contextual fear extinction and consolidation. Using a chronic unpredictable stress paradigm, IGFBP2 reversed stress-induced effects in the Porsolt, novelty-induced hypophagia, sucrose preference, and ultrasonic vocalization assays. IGFBP2 also increased mature dendritic spine densities in the medial prefrontal cortex and hippocampus 24 hours postdosing. Conclusions: These data suggest that IGFBP2 has therapeutic-like effects in multiple rat models of posttraumatic stress disorder via a novel IGF1 receptor-independent mechanism. These data also suggest that the long-lasting effects of IGFBP2 may be due to facilitation of structural plasticity at the dendritic spine level. IGFBP2 and mimetics may have therapeutic potential for the treatment of posttraumatic stress disorder.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Psicotrópicos/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Giro Denteado/metabolismo , Giro Denteado/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/administração & dosagem , Fator de Crescimento Insulin-Like I/administração & dosagem , Fator de Crescimento Insulin-Like I/metabolismo , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Ratos Sprague-Dawley , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/patologia
18.
Curr Neuropharmacol ; 15(1): 47-56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26997507

RESUMO

BACKGROUND: Rapastinel (GLYX-13) is a NMDA receptor modulator with glycine-site partial agonist properties. It is a robust cognitive enhancer and shows rapid and long-lasting antidepressant properties in both animal models and in humans. METHODS: Rapastinel was derived from a monoclonal antibody, B6B21, is a tetrapeptide (threonine-proline-proline-threonine-amide) obtained from amino acid sequence information obtained from sequencing one of the hypervariable regions of the light chain of B6B21. The in-vivo and in-vitro pharmacology of rapastinel was examined. RESULTS: Rapastinel was found to be a robust cognitive enhancer in a variety of learning and memory paradigms and shows marked antidepressant-like properties in multiple models including the forced swim (Porsolt), learned helplessness and chronic unpredictable stress. Rapastinel's rapid-acting antidepressant properties appear to be mediated by its ability to activate NMDA receptors leading to enhancement in synaptic plasticity processes associated with learning and memory. This is further substantiated by the increase in mature dendritic spines found 24 hrs after rapastinel treatment in both the rat dentate gyrus and layer five of the medial prefrontal cortex. Moreover, ex vivo LTP studies showed that the effects of rapastinel persisted at least two weeks post-dosing. CONCLUSION: These data suggest that rapastinel has significant effects on metaplasticity processes that may help explain the long lasting antidepressant effects of rapastinel seen in the human clinical trial results.


Assuntos
Depressão/tratamento farmacológico , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Fatores Etários , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/patologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Comportamento Exploratório/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Oligopeptídeos/química , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Natação , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Vocalização Animal/efeitos dos fármacos
20.
Glycobiology ; 26(12): 1271-1283, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27510958

RESUMO

The mechanism of transcriptional silencing of ST6Gal1 in gliomas has not yet been elucidated. Multiple independent promoters govern the expression of the ST6Gal I gene. Here, we investigated whether epigenetic abnormalities involving DNA methylation affect ST6Gal1 expression. Transcript-specific qRT-PCR following exposure of glioma cell lines to 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, resulted in the re-expression of the normally quiescent ST6Gal1 mRNA driven exclusively by the P3 promoter sequence. The P3 promoter-specific transcription start site (TSS) was delineated by primer extension and core promoter sequences and associated functional transcription elements identified by deletion analysis utilizing chloramphenicol acetyltransferase reporter constructs. Minimal promoter activity was found to reside within the first 100 bp of the TSS and maximal activity was controlled by functional AP2 binding sites residing between 400 and 500 bp upstream of the initiation site. As altered AP2 binding was not directly associated with AP2 availability, these analyses demonstrate that ST6Gal1 transcription is regulated by DNA methylation within core promoter regions, ultimately by determining critical transcription factor accessibility within these regions. Transcriptional reactivation of ST6Gal1 expression by 5-aza-dC resulted in increased cell surface α2,6 sialoglycoconjugate expression, increased α2,6 sialylation of ß1 integrin, and decreased adhesion to fibronectin substrate: functional correlates of decreased invasivity. The effects of global hypomethylation are not glycome-wide. Focused glycotranscriptomic analyses of three invasive glioma cell lines following 5-aza-dC treatment demonstrated the modulation of select glycogene transcripts. Taken together, these results demonstrate that epigenetic modulation of ST6Gal1 expression plays a key role in the glioma phenotype in vitro and that that therapeutic approaches targeting elements of the epigenetic machinery for the treatment of human glioblastoma are warranted.


Assuntos
Antígenos CD/genética , Metilação de DNA/genética , Glioma/genética , Sialiltransferases/genética , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Fenótipo , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...